PROBLEMS

Calculate λ_{max} for the following and explain the lower ϵ_{max} for the middle diene.

Observed λ_{max} (nm) 217 21,000 $\epsilon_{\rm max}$

228 8500

241 23,000

Calculate λ_{max} for the following. 10-21

Observed λ_{max} (nm) 239 17,300 ϵ_{max}

235 19,000 275 10,000

b.

Observed

268 λ_{max} (nm) 22,600 ϵ_{\max}

241 22,600 235 19,000

Observed data from A. I. Scott, Interpretation of the Ultraviolet Spectra of Natural Products, New York, 1962.

$$C_8H_{17}$$
 AcO
 B

The compounds below have Amax 303, 274, and 283 nm. Which compound has which absorption? 10-4

The compounds below have λ_{max} at 305, 349, and 360 nm. Which compound has which absorption? 10-5

What UV-vis λ_{max} would you predict for the $\pi \rightarrow \pi^*$ transitions of the following compounds? 10-6

The following polyenes have ϵ_{max} values of 382, 294, 249, 318, 234, and 244 nm. Assign the λ_{max} to 10-7 each structure.

10-8 Calculate the approximate λ_{max} for the $\pi \rightarrow \pi^*$ transition of each of the following compounds.

The following unsaturated ketones have λ_{max} values of 254, 239, 280, 249, 244, and 407 nm. Assign the λ_{max} to the structure.

10-10 Calculate the approximate λ_{max} for the $\pi \rightarrow \pi^*$ transitions of each of the following compounds.

10-11 The following compounds absorb at 283, 227, 234, and 249 nm. Which compound has which absorption?

10-12 An enol acetate of cholest-4-ene-3-one (A) is prepared and has $\lambda_{max} = 238$ nm with log $\epsilon_{max} = 4.2$. Is the enol acetate B or C?

10-13 Spiroenones were prepared of structures A and B. One showed an intense λ_{max} at 247 nm, the other at 241 nm. Assign the structures.

CH2=CH2

15,000

10-14 Account for the following observations.

Observed
$$\lambda_{\text{max}}$$
 (nm) 183 ϵ_{max} 7500

b.

Observed
$$\lambda_{max}$$
 (nm) 162.5

 ϵ_{\max}

Observed
$$\lambda_{\text{max}}$$
 (nm) 287 ϵ_{max} 40

d.

e.

Observed
$$\lambda_{max}$$
 (nm) 466 ϵ_{max} 31

$$\begin{array}{ccc} \text{Observed} & \lambda_{\text{max}} \; (\text{nm}) & 232 \\ & \epsilon_{\text{max}} & 12{,}500 \end{array}$$

10,000

313

232

12,000

10-15 Calculate the λ_{max} for each of the following compounds.

10-16 Predict and explain whether UV-vis spectroscopy can be used for distinguishing members of the isomeric pairs.

e.
$$C-CH_2CH_3$$
 and CH_2C-CH_3